
Productive Coder

Dr Heinz M. Kabutz
The Java Specialists’ Newsletter

http://javaspecialists.co.za

2

Productive Coder

 How you can have more fun interacting with
your machine …

 … and make your computer less frustrated
with having you as operator

3

Background
 Heinz Kabutz

• The Java Specialists’ Newsletter
 20 000 readers in 111 countries

• Taught Java to hundreds of developers
 Java Patterns Course
 Java 5 Delta Course
 http://javaspecialists.co.za/courses

• Java Champion

• Java programmer since 1997
 Worked on large Java systems

• 500 000 – 1 000 000 LOC

4

5

Become One With Your Machine
 Typical programmer works 60 hours per

week
• We all want maximum of 40 hours

 Programmer and machine should be one
• Feel the machine

• Understand the machine

• Speak nicely to the machine

 Human Computer Interaction is progressing
slowly
• You should be able to type this whilst at the same time

watching TV.

• When you make a typing error, you should know that
you have made it without looking at the screen.

6

Keyboard Skills
 Not all programmers can touch type

 But it is so easy:
• Each keyboard has dimple for index fingers on “F” and

“J”
• From there, each finger controls the buttons above and

below it

 Initial investment of about 20 hours

 Try to mainly use the keyboard – minimize
mouse use
• Menu driven copy & paste …

 German Keyboard layout is bad for coding

7

Keyboard Magic

 Back to the basics of working with
computers

 Applies to any language, not just Java

 But, Java’s IDEs make this approach even
more productive

8

Keyboard Shortcuts

 Memorise as many as possible

 Use them frequently

 Try to minimize mouse usage

 Every IDE is different
• Sometimes on purpose it seems

• CTRL+D in IntelliJ & Eclipse

 Learn vim
• Productive for small jobs

• Good discipline in keyboard use

9

Know Your IDE

 IntelliJ my favourite

• Eclipse narrowing gap

 Short demo of how to create three classes:

• Flower, RarityStatus,
FynbosFan

Orothamnus
zeyheri
(Marsh Rose)

10

Which IDE ? – Does Not Matter!

 Whatever your choice, it’s your choice

 Spend 10 hours getting to know keyboard
shortcuts

 Whether Netbeans, Eclipse, IntelliJ, vim,
Notepad

• No, scratch that last one …

11

Fingers Overtaking the Brain

 You still need to plan

• Stop & think before you start

 When shortcuts & fingers
are too fast:

• Increase speed of your brain

• Think in higher level concepts, such as Design
Patterns

12

Design Patterns

 Mainstream of OO landscape, offering us:

• View into brains of OO experts

• Quicker understanding of
existing designs
 e.g. Visitor pattern used by

Annotation Processing Tool

• Improved communication
between developers

• Readjusting of “thinking mistakes” by developers

13

Vintage Wines

 Design Patterns are like good red wine

• You cannot appreciate them at first

• As you study them you learn the difference
between plonk and vintage, or bad and good
designs

• As you become a connoisseur you experience the
various textures you didn’t notice before

 Warning: Once you are hooked, you will no
longer be satisfied with inferior designs

14

“Houston, We Have a Problem”
 “Our lead developer has left”
• Software works most of the time

• We have to fix it, and add some features …

 How do you start?
• What code is dead?

 Stories of whole teams working on dead code for
years

• Where are the unit test?

• Where could access control be tighter?

• What portion of code is commented?

• How can I find bad code? Copy & paste code?

15

Initial Investigation

 Check where comments are missing
• Doclet that checks that all elements are documented

http://javaspecialists.co.za/archive/newsletter.do?issue=049

 Find fields that are not private
• Doclet that runs through your code and finds non-private fields

 http://javaspecialists.co.za/archive/newsletter.do?issue=035

 Count number of classes, lines of code per class
• Aim is for average of less than 100 lines per class
• One of my customers had one Java class > 30000 LOC

 Run code coverage tool against unit tests

16

What are Realistic Values?

 Beware, LOC is only a rough measurement

Classes

Total LOC
AVG/STDEV

Uncommented
Elements

Project 1
South Africa

1359 263790
194 / 337

24291
18 per class

Project 2
Germany

442 62393
141 / 149

7298
17 per class

Ideal 1000 80260
80 / 61

1000 max
1 per class

17

Comments Should Explain “Why”
 Should not just be: Method getName returns the

name.

 Switch off automatic comment generation

 Either fill in comments properly, or leave them out

 Method names and parameters should be descriptive

 “Why I don’t read your code comments …”

• Most misunderstood newsletter

• http://javaspecialists.co.za/archive/newsletter.do?issue=039

• I do write my own comments, but about “why” not
“what”

• But, I seldom find projects with well-written comments

18

Comments: java.awt.color.ColorSpace

 Rather insightful comment in JDK 1.3:

 /**
 * Returns the name of the component given the
 * component index
 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 return new String(
 "Unnamed color component("+idx+")");
}

 What is “REMIND” supposed to tell us?

19

Comments: java.awt.color.ColorSpace

 In JDK 1.4, more comments, but still the
question
/**
 * Returns the name of the component given the
 * component index.
 * @param idx The component index.
 * @return The name of the component at the
 * specified index.
 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 return new String(
 "Unnamed color component("+idx+")");
}

20

Comments: java.awt.color.ColorSpace
 Java 5

/** Returns the name of the component given the
 * component index.
 * @param idx The component index.
 * @return The name of the component at the
 * specified index.
 * @throws IllegalArgumentException if idx is less
 * than 0 or greater than numComponents – 1 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 if ((idx < 0) || (idx > numComponents - 1)) {
 throw new IllegalArgumentException(
 "Component index out of range: " + idx);
 }
 return new String(
 "Unnamed color component("+idx+")");
}

21

Comments: java.awt.color.ColorSpace
 Java 6

/** Returns the name of the component given the
 * component index.
 * @param idx The component index.
 * @return The name of the component at the
 * specified index.
 * @throws IllegalArgumentException if idx is less
 * than 0 or greater than numComponents – 1 */
public String getName (int idx) {
 /* REMIND - handle common cases here */
 if ((idx < 0) || (idx > numComponents - 1)) {
 throw new IllegalArgumentException(
 "Component index out of range: " + idx);
 }

 if (compName == null) {
 switch (type) {
 case ColorSpace.TYPE_XYZ:
 compName = new String[] {"X", "Y", "Z"}; break;

22

Commenting Out Code

 Source Control Systems

• Have been around for decades

 Don’t duplicate work done by source control

 If code is dead, delete it, don’t comment it
out

23

Funny Comments

 JDK 1.3: java.io.ObjectStreamClass
private final static Class[] NULL_ARGS = {};
//WORKAROUND compiler bug with following code.
//static final Class[]OIS_ARGS={ObjectInpuStream.class};
//static final Class[]OOS_ARGS={ObjectOutpuStream.class};
private static Class[] OIS_ARGS = null;
private static Class[] OOS_ARGS = null;
private static void initStaticMethodArgs() {
 OOS_ARGS = new Class[1];
 OOS_ARGS[0] = ObjectOutputStream.class;
 OIS_ARGS = new Class[1];
 OIS_ARGS[0] = ObjectInputStream.class;
}

 “The compiler team is writing useless code again …”
• http://javaspecialists.co.za/archive/newsletter.do?issue=046

Shouldn’t that be
ObjectInputStream?

24

“Wonderfully Disgusting Hack”

 JDK 1.4: java.awt.Toolkit
static boolean enabledOnToolkit(long eventMask) {
// Wonderfully disgusting hack for Solaris 9

 This made me think:
1.All software contains hacks.
2.I would prefer to know about them.
3.Only a real developer would write "hack" into his

comments.
4.Rather use Java than black-box proprietary solution

with hundreds of undocumented hacks

 “Wonderfully Disgusting Hack”
• http://javaspecialists.co.za/archive/newsletter.do?issue=077

25

Before You Change Any Code…

 Refactoring is dangerous!

 You must have good unit tests
• And great skill if you don’t have unit tests…

 Also system tests

 In troubled projects, unit tests often absent

26

Real-Life Case Study

 Customer has kindly agreed for you to see
his code

 Domains, names, etc. have been altered

 This is not the worst I have had to work with

27

Real-Life Example

 Company someone.com has Java application

 Single programmer has left

 Features must be added and bugs fixed

 Initial stats:

Classes Total LOC
AVG /
STDEV

Uncommented
Elements

Someone.com 97 19478
201 / 181

2461
25 per class

28

Better Metrics

 Fanout (FO)
• Number of other classes used in

 Fields
 Parameters
 Local variables
 Return
 Throws

• Primitives and supertypes not counted

• Recommended maximum of 15

• Warning sign: Large number of “import” statements

29

Better Metrics

 Halstead Program Length (HPLen)
• Halstead Software Science metric

 Calculated per class
 'Number of Operators' + 'Number of Operands‘

• Maximum of 2000

• Average should be much less

30

Better Metrics

 Maximum Size Of Operation (MSOO)
• Counts maximum size of operations for a class

• Method size determined by cyclomatic complexity
 number of if, for and while statements

• Finds overly complex, badly factored methods

31

Better Metrics

 Number Of Added Methods (NOAM)
• Counts the number of operations added by a class

 Inherited and overridden operations are not counted

• Absolute maximum is 50
 Maybe too generous?

• Large value means subclass is too different to superclass

32

What do the Metrics Say?

33

Encapsulation
 Encapsulation is more than private fields
• Though all non-constant fields should be private

 Getters and Setters often break
encapsulation

 What is the difference between public
getName() and setName() methods and
making field public?
• Yes, you can check input values

34

Non-private Fields

 Search with Doclet
• http://javaspecialists.co.za/archive/newsletter.do?issue=035

 Output:
Non-private data members:
public com.someone.gui.InfoFrame:
 java.lang.StringBuffer buffer
public com.someone.gui.TableMap:
 protected javax.swing.table.TableModel model
public com.someone.io.DelimitedFileDataSource:
 protected java.lang.String[][] data
 protected int index
public com.someone.io.DelimitedFileReader:
 protected java.lang.String fileName
 protected java.lang.String[] headers

Found 203
non-private

non-
constant

fields

35

Fixing the Code

 Either make them all private and see what
breaks
• Kind of tedious

 Or use a tool to tighten field access control
• Made me into an IntelliJ convert
• Short demonstration …

 Rerun the doclet: 104 non-private fields
• An improvement from 203!

 Now real work begins – why are they not
private?

36

Immutable Fields

 Fields should be marked “final” where possible
• http://javaspecialists.co.za/archive/newsletter.do?issue=025

 Immutable objects are easier to work with

• Helps discover bugs

• Synchronization is easier

 Garbage collector copes well with short-lived objects

 A class with descriptive long names

public class SessionConnectorWithRetryAtLeastThreeTimes {
private String connectionNameReceivedFromInternet;
private int numberOfTimesThatWeShouldRetryAtLeast;

}

37

Add a Constructor

public class SessionConnectorWithRetryAtLeastThreeTimes {
private String connectionNameReceivedFromInternet;
private int numberOfTimesThatWeShouldRetryAtLeast;
public SessionConnectorWithRetryAtLeastThreeTimes(
 String c, int n) {
 connectionNameReceivedFromInternet = c;
 numberOfTimesThatWeShouldRetryAtLeast = n;
}

}

 Problem – we need to read the comments to
know what c and n are

38

 It compiles and runs, but one field is not
initialised

public class SessionConnectorWithRetryAtLeastThreeTimes
{ private String connectionNameReceivedFromInternet;
private int numberOfTimesThatWeShouldRetryAtLeast;
public SessionConnectorWithRetryAtLeastThreeTimes(
 String connectionNameReoeivedFromInternet,
 int numberOfTimesThatWeShouldRetryAtLeast) {
 this.connectionNameReceivedFromInternet =
 connectionNameReceivedFromInternet;
 this.numberOfTimesThatWeShouldRetryAtLeast =
 numberOfTimesThatWeShouldRetryAtLeast;
}

}

Use the Classic “this.” Assignment

39

Make Fields Final
 Making them final shows the problem:
• Parameter connectionNameReoeivedFromInternet

 So, make all fields as private and final as
possible

 Search for non-final fields using a Doclet
• Not published, but easy to write

• In our example, 644 fields were non-final

 Again, fix either one class at a time, or use a
tool
• Quick demonstration with IntelliJ – by hand takes longer

• We now have 380 non-final fields left

40

How Final is “final”?
 Sun Microsystems ambivalent:
• JDK 1.1:

 Access control (private, etc.) not checked at runtime
 Final fields cannot be rebound at runtime

• JDK 1.2:
 Access control checked at runtime, setAccessible(true)

overrides
 Final fields could be rebound at runtime with reflection

• JDK 1.3 + 1.4:
 Final fields cannot be rebound at runtime

• JDK 1.5 + 1.6:
 Final fields can be rebound at runtime with reflection
 Except when primitive or String fields are set at

declaration time

41

Java Versions: When “final” Was Final
 Java versions and lifespans

 Suggestion: Treat final as if it really was …
• http://javaspecialists.co.za/archive/newsletter.do?issue=096

Version Code Name Release
Date

Lifespan
(months)

Final
is

finalJDK 1.1.4 Sparkler 1997-09-12 15 Yes

J2SE 1.2 Playground 1998-12-04 18 No

J2SE 1.3 Kestrel 2000-05-08 21 Yes

J2SE 1.4 Merlin 2002-02-13 31 Yes

J2SE 5.0 Tiger 2004-09-29 18 No

42

Dead Code

 Many times I have fixed bugs in dead code

 Dead code should be pruned
1.Make elements as private as possible

2.Make fields final

3.Search for dead code and delete

4.GOTO 1

43

After Pruning Dead Code

 Rerun the doclets:

• 89 classes (down by 8)

• 16879 LOC (down by 2599)

• 79 non-private fields (down by 25)

• 324 non-final fields (down by 56)

44

Back to Comments
 Strip out useless comments and commented-

out code
• Source Control System is doing source control
• Don’t duplicate effort!
• Root of problem is fear

 If commented code looks useful, leave a
note
• E.g. // CodeComment removed
• Coder can look in source control system for

CodeComment

 Our system now has 14505 LOC
• Originally 19478 – reduced by over 25%

45

Depth of Inheritance Hierarchy

 Complexity of code can be related to hierarchy
depth

 Overly deep hierarchies should be avoided

 You can check the depth with this simple tool
• http://javaspecialists.co.za/archive/newsletter.do?issue=121

 Try beat our record:
• Proprietary code: hierarchy depth of 10

• Open Source: Hierarchy depth of 12
 Rob Mulcahey, Current Inc, Colorado Springs
 org.apache.batik.dom.svg.SVGOMAltGlyphElement

46

Exception Handling

 Quick manual inspection for bad exception handling

 Methods should not throw “Exception”

private void initGui() throws Exception {
initNorth();
tabbedPane = new JTabbedPane();
getContentPane().add(tabbedPane, BorderLayout.CENTER);

 And the catch blocks should not be empty

47

Never Catch RuntimeException

 Code should not catch RuntimeException

 try {
 data = FruitspecTableModel.getColumnData(i);
} catch (RuntimeException e) {
}

 Replace that with a check on the value of “i”

 Implies not catching Exception

 try {
 data = FruitspecTableModel.getColumnData(i);
} catch (Exception e) {
}

48

Sloppy Exception Handling

 Can cause parts of system to stop working
• Gives user false sense of security

 All exceptions need to be noted
• Either logged to a file or the help desk

 With Java 5 you can specify global exception
handler
• http://javaspecialists.co.za/archive/newsletter.do?issue=089

• Nice, but does not solve the “poor coding” of empty catch blocks

49

Global Exception Handling

 public class DefaultExceptionHandler implements
 Thread.UncaughtExceptionHandler {
 public void uncaughtException(Thread t, Throwable e) {
 // You need more robust, permanent record of problems
 JOptionPane.showMessageDialog(findActiveFrame(),
 e.toString(), "Exception Occurred",
 JOptionPane.OK_OPTION);
 e.printStackTrace();
 }
 private Frame findActiveFrame() {
 for (Frame frame : JFrame.getFrames()) {
 if (frame.isVisible()) return frame;
 }
 return null;
 }
}

50

 Thread.setDefaultUncaughtExceptionHandler()

 public class EvenBetterGui {
 public static void main(String[] args) {
 Thread.setDefaultUncaughtExceptionHandler(
 new DefaultExceptionHandler());
 Gui gui = new Gui();
 gui.pack();
 gui.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 gui.setVisible(true);
 }
}

Register with Class Thread

51

Now Code is More Manageable

 Now the real work starts:

• Find and eliminate duplicate code

• Encapsulate fields that are still non-private

• Set up test environment

 From here, you must tread carefully

• Make sure you can roll back easily

• Check frequently that code still works

52

Automatic Tools and Reflection

 Java tools rely on static compilation of
classes

 Be careful when using Reflection and
Dynamic Proxies

53

Check your code

 Regularly check your own work:

• Elements are properly commented

• Exceptions are handled correctly

• Fields are private

• Fields are final where possible

• Unit tests cover your code base

• Look for copy & paste code
 Sometimes difficult to eliminate

54

Develop with Pleasure!

 Make your code a pleasure to work with

 And don’t be scared of fixing messy code

55

Some Keystroke Hints

 The appendix contains some hints on
keyboard shortcuts in Eclipse and IntelliJ

56

Eclipse
 Create new class: Alt+Shift+N, C

 Autocompletion on keywords?
• Type “in” followed by CTRL+Space …

 Reaching Esc is awkward on the keyboard
 My fingers have to leave the safety of the dimples

 Error or unknown symbols in Eclipse – press
Ctrl+1

 How do I get back to the previous file
without using the mouse?
• Alt+left and Alt+right

57

Autogenerating Java Code

 Make constructor: Alt+S, A
• Parameters not in same order as fields

 Though this may be a setting somewhere

• Enter does not work

• Names of parameters not the same as the fields

 Getters / Setters: Alt+S, R
• Again, not in same order as fields & enter does not work

 Main method: main Ctrl+Space

 Ctrl + Shift + Space shows parameters

58

Eclipse Magic Keys

 Ctrl+Space autocompletes
• “syso” generates: System.out.println();

• “for” generates: for (int i = 0; i < args.length; i++) { }

• Problem is that Ctrl+Space is awkward to type

 Ctrl+1 autofixes code
• But cursor jumps all over the place

 An IDE needs to be like a chef’s knife, sharp
and true

59

IntelliJ IDEA
 Create new class: In project window (Alt+1)

Alt+Insert

 Autocompletion on keywords?
• Works a bit better…

• Type “in” followed by CTRL+Space …

 Error or unknown symbols in IntelliJ – press
Ctrl+Enter
• F2 finds the next problem

60

Autogenerating Java Code

 Make constructor: Alt+Insert
• Parameters same order as fields

• Names of parameters same as the fields

 Getters / Setters: Alt+Insert
• It does what I expect

 equals() & hashCode(): Alt+Insert
• Enter does not work that well

 Ctrl+plus and Ctrl+minus folds & unfolds
methods

 Main method: psvm Tab

61

IntelliJ Magic Keys

 Ctrl + Shift + Space is intelligent autocomplete
• Extremely useful

 Tab fills in Live Templates
• “sout” generates: System.out.println();

• “itar” generates: for (int i = 0; i < args.length; i++) { }

• Problem is that Ctrl+Space is awkward to type

 Alt+Enter autofixes code
• Cursor stays in the same place

 Ctrl+W selects wider and wider scope

62

Style and Metrics Tools

 MetricsReloaded (IntelliJ IDEA Plugin)
• http://www.sixthandredriver.com/metricsreloaded.html

 Together Control Center

 CheckStyle
• http://checkstyle.sourceforge.net

 FindBugs
• http://findbugs.sourceforge.net

 Java PathFinder (from NASA)
• http://javapathfinder.sourceforge.net

 Project Mess Detector (PMD)
• http://pmd.sourceforge.net/

Questions?

Heinz Kabutz
heinz@javaspecialists.co.za

The Java Specialists’ Newsletter
http://javaspecialists.co.za

