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Productive Coder

 How you can have more fun interacting with 
your machine …

 … and make your computer less frustrated 
with having you as operator 
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Background
 Heinz Kabutz

• The Java Specialists’ Newsletter
  20 000 readers in 111 countries 

• Taught Java to hundreds of developers
 Java Patterns Course
 Java 5 Delta Course
 http://javaspecialists.co.za/courses

• Java Champion

• Java programmer since 1997
 Worked on large Java systems

• 500 000 – 1 000 000 LOC
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Become One With Your Machine
 Typical programmer works 60 hours per 

week
• We all want maximum of 40 hours

 Programmer and machine should be one
• Feel the machine

• Understand the machine

• Speak nicely to the machine 

 Human Computer Interaction is progressing 
slowly
• You should be able to type this whilst at the same time 

watching TV.

• When you make a typing error, you should know that 
you have made it without looking at the screen.
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Keyboard Skills
 Not all programmers can touch type

 But it is so easy:
• Each keyboard has dimple for index fingers on “F” and 

“J”
• From there, each finger controls the buttons above and 

below it

 Initial investment of about 20 hours

 Try to mainly use the keyboard – minimize 
mouse use
• Menu driven copy & paste …

 German Keyboard layout is bad for coding
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Keyboard Magic

 Back to the basics of working with 
computers

 Applies to any language, not just Java

 But, Java’s IDEs make this approach even 
more productive
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Keyboard Shortcuts

 Memorise as many as possible

 Use them frequently

 Try to minimize mouse usage

 Every IDE is different
• Sometimes on purpose it seems

• CTRL+D in IntelliJ & Eclipse

 Learn vim
• Productive for small jobs

• Good discipline in keyboard use
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Know Your IDE

 IntelliJ my favourite

• Eclipse narrowing gap

 Short demo of how to create three classes:

• Flower, RarityStatus, 
FynbosFan

Orothamnus 
zeyheri 
(Marsh Rose)
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Which IDE ? – Does Not Matter!

 Whatever your choice, it’s your choice

 Spend 10 hours getting to know keyboard 
shortcuts

 Whether Netbeans, Eclipse, IntelliJ, vim, 
Notepad

• No, scratch that last one …
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Fingers Overtaking the Brain

 You still need to plan

• Stop & think before you start

 When shortcuts & fingers
are too fast:

• Increase speed of your brain

• Think in higher level concepts, such as Design 
Patterns
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Design Patterns

 Mainstream of OO landscape, offering us:

• View into brains of OO experts

• Quicker understanding of 
existing designs
 e.g. Visitor pattern used by 

Annotation Processing Tool

• Improved communication 
between developers

• Readjusting of “thinking mistakes” by developers
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Vintage Wines

 Design Patterns are like good red wine

• You cannot appreciate them at first

• As you study them you learn the difference 
between plonk and vintage, or bad and good 
designs

• As you become a connoisseur you experience the 
various textures you didn’t notice before

 Warning: Once you are hooked, you will no 
longer be satisfied with inferior designs
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“Houston, We Have a Problem”
 “Our lead developer has left”
• Software works most of the time

• We have to fix it, and add some features …

 How do you start?
• What code is dead?

 Stories of whole teams working on dead code for 
years

• Where are the unit test?

• Where could access control be tighter?

• What portion of code is commented?

• How can I find bad code?  Copy & paste code?
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Initial Investigation

 Check where comments are missing
• Doclet that checks that all elements are documented

http://javaspecialists.co.za/archive/newsletter.do?issue=049

 Find fields that are not private
• Doclet that runs through your code and finds non-private fields

 http://javaspecialists.co.za/archive/newsletter.do?issue=035

 Count number of classes, lines of code per class
• Aim is for average of less than 100 lines per class
• One of my customers had one Java class > 30000 LOC

 Run code coverage tool against unit tests
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What are Realistic Values?

 Beware, LOC is only a rough measurement

# 
Classes

Total LOC
AVG/STDEV

Uncommented 
Elements

Project 1
South Africa

1359 263790
194 / 337

24291
18 per class

Project 2
Germany

442 62393
141 / 149

7298
17 per class

Ideal 1000 80260
80 / 61

1000 max
1 per class
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Comments Should Explain “Why”
 Should not just be: Method getName returns the 

name.

 Switch off automatic comment generation

 Either fill in comments properly, or leave them out

 Method names and parameters should be descriptive

 “Why I don’t read your code comments …”

• Most misunderstood newsletter

• http://javaspecialists.co.za/archive/newsletter.do?issue=039

• I do write my own comments, but about “why” not 
“what”

• But, I seldom find projects with well-written comments
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Comments: java.awt.color.ColorSpace

 Rather insightful comment in JDK 1.3:

  /** 
 * Returns the name of the component given the 
 * component index  
 */ 
public String getName (int idx) {
  /* REMIND - handle common cases here */ 
  return new String(
    "Unnamed color component("+idx+")"); 
} 

 What is “REMIND” supposed to tell us?
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Comments: java.awt.color.ColorSpace

 In JDK 1.4, more comments, but still the 
question
/** 
 * Returns the name of the component given the 
 * component index.   
 * @param idx The component index. 
 * @return The name of the component at the
 * specified index. 
 */ 
public String getName (int idx) { 
  /* REMIND - handle common cases here */ 
  return new String(
    "Unnamed color component("+idx+")"); 
} 
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Comments: java.awt.color.ColorSpace
 Java 5

/** Returns the name of the component given the 
 * component index.   
 * @param idx The component index. 
 * @return The name of the component at the
 * specified index. 
 * @throws IllegalArgumentException if idx is less
 * than 0 or greater than numComponents – 1 */ 
public String getName (int idx) { 
  /* REMIND - handle common cases here */ 
 if ((idx < 0) || (idx > numComponents - 1)) {
    throw new IllegalArgumentException(
      "Component index out of range: " + idx);
 }  
 return new String(
   "Unnamed color component("+idx+")"); 
}
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Comments: java.awt.color.ColorSpace
 Java 6

/** Returns the name of the component given the 
 * component index.   
 * @param idx The component index. 
 * @return The name of the component at the
 * specified index. 
 * @throws IllegalArgumentException if idx is less
 * than 0 or greater than numComponents – 1 */ 
public String getName (int idx) { 
  /* REMIND - handle common cases here */ 
 if ((idx < 0) || (idx > numComponents - 1)) {
    throw new IllegalArgumentException(
      "Component index out of range: " + idx);
 }

   if (compName == null) {
      switch (type) {
        case ColorSpace.TYPE_XYZ:
        compName = new String[] {"X", "Y", "Z"}; break;
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Commenting Out Code

 Source Control Systems

• Have been around for decades

 Don’t duplicate work done by source control

 If code is dead, delete it, don’t comment it 
out



23

Funny Comments

 JDK 1.3: java.io.ObjectStreamClass
private final static Class[] NULL_ARGS = {};
//WORKAROUND compiler bug with following code. 
//static final Class[]OIS_ARGS={ObjectInpuStream.class}; 
//static final Class[]OOS_ARGS={ObjectOutpuStream.class}; 
private static Class[] OIS_ARGS = null; 
private static Class[] OOS_ARGS = null; 
private static void initStaticMethodArgs() {  
  OOS_ARGS = new Class[1]; 
  OOS_ARGS[0] = ObjectOutputStream.class; 
  OIS_ARGS = new Class[1]; 
  OIS_ARGS[0] = ObjectInputStream.class; 
}

 “The compiler team is writing useless code again …”
• http://javaspecialists.co.za/archive/newsletter.do?issue=046

Shouldn’t that be 
ObjectInputStream?
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“Wonderfully Disgusting Hack”

 JDK 1.4: java.awt.Toolkit
static boolean enabledOnToolkit(long eventMask) { 
// Wonderfully disgusting hack for Solaris 9 

 This made me think:
1.All software contains hacks. 
2.I would prefer to know about them. 
3.Only a real developer would write "hack" into his 

comments. 
4.Rather use Java than black-box proprietary solution 

with hundreds of undocumented hacks 

 “Wonderfully Disgusting Hack”
• http://javaspecialists.co.za/archive/newsletter.do?issue=077
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Before You Change Any Code…

 Refactoring is dangerous!

 You must have good unit tests
• And great skill if you don’t have unit tests…

 Also system tests

 In troubled projects, unit tests often absent
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Real-Life Case Study

 Customer has kindly agreed for you to see 
his code

 Domains, names, etc. have been altered

 This is not the worst I have had to work with
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Real-Life Example

 Company someone.com has Java application

 Single programmer has left

 Features must be added and bugs fixed

 Initial stats:

# Classes Total LOC
AVG / 
STDEV

Uncommented 
Elements

Someone.com 97 19478
201 / 181

2461
25 per class
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Better Metrics

 Fanout (FO)
• Number of other classes used in

 Fields
 Parameters
 Local variables
 Return
 Throws

• Primitives and supertypes not counted

• Recommended maximum of 15

• Warning sign: Large number of “import” statements
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Better Metrics

 Halstead Program Length (HPLen)
• Halstead Software Science metric

 Calculated per class
 'Number of Operators' + 'Number of Operands‘

• Maximum of 2000

• Average should be much less
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Better Metrics

 Maximum Size Of Operation (MSOO)
• Counts maximum size of operations for a class

• Method size determined by cyclomatic complexity
 number of if, for and while statements

• Finds overly complex, badly factored methods
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Better Metrics

 Number Of Added Methods (NOAM)
• Counts the number of operations added by a class

 Inherited and overridden operations are not counted

• Absolute maximum is 50
 Maybe too generous?

• Large value means subclass is too different to superclass
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What do the Metrics Say?
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Encapsulation
 Encapsulation is more than private fields
• Though all non-constant fields should be private

 Getters and Setters often break 
encapsulation

 What is the difference between public 
getName() and setName() methods and 
making field public?
• Yes, you can check input values
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Non-private Fields

 Search with Doclet
• http://javaspecialists.co.za/archive/newsletter.do?issue=035

 Output:
Non-private data members:
public com.someone.gui.InfoFrame:
 java.lang.StringBuffer buffer
public com.someone.gui.TableMap:
 protected javax.swing.table.TableModel model
public com.someone.io.DelimitedFileDataSource:
 protected java.lang.String[][] data
 protected int index
public com.someone.io.DelimitedFileReader:
 protected java.lang.String fileName
 protected java.lang.String[] headers

Found 203 
non-private 

non-
constant 

fields
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Fixing the Code

 Either make them all private and see what 
breaks
• Kind of tedious

 Or use a tool to tighten field access control
• Made me into an IntelliJ convert
• Short demonstration …

 Rerun the doclet: 104 non-private fields
• An improvement from 203!

 Now real work begins – why are they not 
private?
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Immutable Fields

 Fields should be marked “final” where possible
• http://javaspecialists.co.za/archive/newsletter.do?issue=025

 Immutable objects are easier to work with

• Helps discover bugs

• Synchronization is easier

 Garbage collector copes well with short-lived objects

 A class with descriptive long names

public class SessionConnectorWithRetryAtLeastThreeTimes {   
private String connectionNameReceivedFromInternet; 
private int numberOfTimesThatWeShouldRetryAtLeast; 

}
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Add a Constructor

public class SessionConnectorWithRetryAtLeastThreeTimes { 
private String connectionNameReceivedFromInternet;
private int numberOfTimesThatWeShouldRetryAtLeast;
public SessionConnectorWithRetryAtLeastThreeTimes(
    String c, int n) { 
  connectionNameReceivedFromInternet = c; 
  numberOfTimesThatWeShouldRetryAtLeast = n; 
} 

} 

 Problem – we need to read the comments to 
know what c and n are
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 It compiles and runs, but one field is not 
initialised

public class SessionConnectorWithRetryAtLeastThreeTimes 
{ private String connectionNameReceivedFromInternet; 
private int numberOfTimesThatWeShouldRetryAtLeast; 
public SessionConnectorWithRetryAtLeastThreeTimes( 
      String connectionNameReoeivedFromInternet, 
      int numberOfTimesThatWeShouldRetryAtLeast) { 
  this.connectionNameReceivedFromInternet = 
    connectionNameReceivedFromInternet; 
  this.numberOfTimesThatWeShouldRetryAtLeast = 
    numberOfTimesThatWeShouldRetryAtLeast; 
} 

}

Use the Classic “this.” Assignment
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Make Fields Final
 Making them final shows the problem:
• Parameter connectionNameReoeivedFromInternet

 So, make all fields as private and final as 
possible

 Search for non-final fields using a Doclet
• Not published, but easy to write

• In our example, 644 fields were non-final

 Again, fix either one class at a time, or use a 
tool
• Quick demonstration with IntelliJ – by hand takes longer

• We now have 380 non-final fields left
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How Final is “final”?
 Sun Microsystems ambivalent:
• JDK 1.1: 

 Access control (private, etc.) not checked at runtime
 Final fields cannot be rebound at runtime

• JDK 1.2:
 Access control checked at runtime, setAccessible(true) 

overrides
 Final fields could be rebound at runtime with reflection

• JDK 1.3 + 1.4:
 Final fields cannot be rebound at runtime

• JDK 1.5 + 1.6:
 Final fields can be rebound at runtime with reflection
 Except when primitive or String fields are set at 

declaration time
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Java Versions: When “final” Was Final
 Java versions and lifespans

 Suggestion: Treat final as if it really was …
• http://javaspecialists.co.za/archive/newsletter.do?issue=096

Version Code Name Release 
Date

Lifespan 
(months)

Final 
is 

finalJDK 1.1.4 Sparkler 1997-09-12 15 Yes

J2SE 1.2 Playground 1998-12-04 18 No

J2SE 1.3 Kestrel 2000-05-08 21 Yes

J2SE 1.4 Merlin 2002-02-13 31 Yes

J2SE 5.0 Tiger 2004-09-29 18 No
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Dead Code

 Many times I have fixed bugs in dead code

 Dead code should be pruned
1.Make elements as private as possible

2.Make fields final

3.Search for dead code and delete

4.GOTO 1
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After Pruning Dead Code

 Rerun the doclets:

• 89 classes (down by 8)

• 16879 LOC (down by 2599)

• 79 non-private fields (down by 25)

• 324 non-final fields (down by 56)
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Back to Comments
 Strip out useless comments and commented-

out code
• Source Control System is doing source control
• Don’t duplicate effort!
• Root of problem is fear

 If commented code looks useful, leave a 
note
• E.g.     // CodeComment removed
• Coder can look in source control system for 

CodeComment

 Our system now has 14505 LOC
• Originally 19478 – reduced by over 25%
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Depth of Inheritance Hierarchy

 Complexity of code can be related to hierarchy 
depth

 Overly deep hierarchies should be avoided

 You can check the depth with this simple tool
• http://javaspecialists.co.za/archive/newsletter.do?issue=121

 Try beat our record:
• Proprietary code: hierarchy depth of 10

• Open Source: Hierarchy depth of 12
 Rob Mulcahey, Current Inc, Colorado Springs
 org.apache.batik.dom.svg.SVGOMAltGlyphElement
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Exception Handling

 Quick manual inspection for bad exception handling

 Methods should not throw “Exception”

private void initGui() throws Exception {
initNorth();
tabbedPane = new JTabbedPane();
getContentPane().add(tabbedPane, BorderLayout.CENTER);

 And the catch blocks should not be empty
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Never Catch RuntimeException

 Code should not catch RuntimeException

  try {
  data = FruitspecTableModel.getColumnData(i);
} catch (RuntimeException e) {
}

 Replace that with a check on the value of “i”

 Implies not catching Exception

  try {
  data = FruitspecTableModel.getColumnData(i);
} catch (Exception e) {
}
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Sloppy Exception Handling

 Can cause parts of system to stop working
• Gives user false sense of security

 All exceptions need to be noted
• Either logged to a file or the help desk

 With Java 5 you can specify global exception 
handler
• http://javaspecialists.co.za/archive/newsletter.do?issue=089

• Nice, but does not solve the “poor coding” of empty catch blocks
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Global Exception Handling

  public class DefaultExceptionHandler implements
        Thread.UncaughtExceptionHandler { 
  public void uncaughtException(Thread t, Throwable e) { 
    // You need more robust, permanent record of problems 
    JOptionPane.showMessageDialog(findActiveFrame(),
      e.toString(), "Exception Occurred", 
      JOptionPane.OK_OPTION); 
    e.printStackTrace(); 
  } 
  private Frame findActiveFrame() { 
    for (Frame frame : JFrame.getFrames()) { 
      if (frame.isVisible()) return frame; 
    } 
    return null; 
  } 
} 
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 Thread.setDefaultUncaughtExceptionHandler()

  public class EvenBetterGui { 
  public static void main(String[] args) {   
    Thread.setDefaultUncaughtExceptionHandler( 
      new DefaultExceptionHandler()); 
    Gui gui = new Gui(); 
    gui.pack(); 
    gui.setDefaultCloseOperation(
      JFrame.EXIT_ON_CLOSE); 
    gui.setVisible(true); 
  } 
} 

Register with Class Thread
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Now Code is More Manageable 

 Now the real work starts:

• Find and eliminate duplicate code

• Encapsulate fields that are still non-private

• Set up test environment

 From here, you must tread carefully

• Make sure you can roll back easily

• Check frequently that code still works
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Automatic Tools and Reflection

 Java tools rely on static compilation of 
classes

 Be careful when using Reflection and 
Dynamic Proxies
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Check your code

 Regularly check your own work:

• Elements are properly commented

• Exceptions are handled correctly

• Fields are private

• Fields are final where possible

• Unit tests cover your code base

• Look for copy & paste code
 Sometimes difficult to eliminate
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Develop with Pleasure!

 Make your code a pleasure to work with

 And don’t be scared of fixing messy code
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Some Keystroke Hints

 The appendix contains some hints on 
keyboard shortcuts in Eclipse and IntelliJ
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Eclipse
 Create new class: Alt+Shift+N, C

 Autocompletion on keywords?
• Type “in” followed by CTRL+Space …

 Reaching Esc is awkward on the keyboard
 My fingers have to leave the safety of the dimples

 Error or unknown symbols in Eclipse – press 
Ctrl+1

 How do I get back to the previous file 
without using the mouse?
• Alt+left and Alt+right
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Autogenerating Java Code

 Make constructor: Alt+S, A
• Parameters not in same order as fields

 Though this may be a setting somewhere

• Enter does not work

• Names of parameters not the same as the fields

 Getters / Setters: Alt+S, R
• Again, not in same order as fields & enter does not work

 Main method: main Ctrl+Space

 Ctrl + Shift + Space shows parameters
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Eclipse Magic Keys

 Ctrl+Space autocompletes
• “syso” generates: System.out.println();

• “for” generates:  for (int i = 0; i < args.length; i++) {   }

• Problem is that Ctrl+Space is awkward to type

 Ctrl+1 autofixes code
• But cursor jumps all over the place 

 An IDE needs to be like a chef’s knife, sharp 
and true
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IntelliJ IDEA
 Create new class: In project window (Alt+1) 

Alt+Insert

 Autocompletion on keywords?
• Works a bit better…

• Type “in” followed by CTRL+Space …

 Error or unknown symbols in IntelliJ – press 
Ctrl+Enter
• F2 finds the next problem
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Autogenerating Java Code

 Make constructor: Alt+Insert
• Parameters same order as fields

• Names of parameters same as the fields

 Getters / Setters: Alt+Insert
• It does what I expect

 equals() & hashCode(): Alt+Insert
• Enter does not work that well

 Ctrl+plus and Ctrl+minus folds & unfolds 
methods

 Main method: psvm Tab
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IntelliJ Magic Keys

 Ctrl + Shift + Space is intelligent autocomplete
• Extremely useful

 Tab fills in Live Templates
• “sout” generates: System.out.println();

• “itar” generates:  for (int i = 0; i < args.length; i++) {   }

• Problem is that Ctrl+Space is awkward to type

 Alt+Enter autofixes code
• Cursor stays in the same place 

 Ctrl+W selects wider and wider scope
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Style and Metrics Tools

 MetricsReloaded (IntelliJ IDEA Plugin)
• http://www.sixthandredriver.com/metricsreloaded.html

 Together Control Center

 CheckStyle
• http://checkstyle.sourceforge.net

 FindBugs
• http://findbugs.sourceforge.net

 Java PathFinder (from NASA)
• http://javapathfinder.sourceforge.net

 Project Mess Detector (PMD)
• http://pmd.sourceforge.net/



Questions?

Heinz Kabutz
heinz@javaspecialists.co.za

The Java Specialists’ Newsletter
http://javaspecialists.co.za


